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We consider the problem of the determination of the state of stress and strain of 

stochastically nonhomogenous elastic bodies. As a result of the application of 

the generalized method of statistical linearization, we obtain a closed system of 
equations and for a normal probability distribution a system of integro-differen- 
tial equations relative to the mathematical expectations. 

For an isotropic medium, whose elastic moduli are homogeneous isotropic ran- 
dom functions of the coordinates, we obtain the expressions of the effective elas- 
ticity moduli in terms of the mathematical expectations and the dispersion of 

the random functions describing the properties of the medium. 

1. We assume that the random functions are connected by the nonlinear relation 

z = XijYij (1.1) 

Here and in the sequel, repeated Latin indices indicate summation from one to three. 

We represent the functions which occur in (1.1) in the form of a sum of mathematical 
expectations and deviations from them 

2 =(z)+z’, Xij = (X,j> + Yij’, Yij = (Yij) + Y’,j 

The approximating function of the relation (1.1) is taken in the form 

V’ = u + UijYij’ + bijX,l (1.2) 

The nonrandom functions a, aij, bij will be defined from the condition of the mini- 
mum mathematical expectation of the square of the difference between the correct and 

the approximating functions [l] 
((2 - V)2) = min (1.3) 

Applying the extremum condition to the expression (1.3) with respect to the parameters, 

we obtain the linear system of equations with respect to the unknowns 

a = (Xij> (Yij) + (Xrn~2’~mn’) 

ai j( ymn ‘Yijl) + bij (Y,,‘Xij’ ) = (Xij) ( YijlYmn’ > t- 

(Yij) (X,j’Ymn’) + (Xij’Yij’Ymn’) 

aij (Y,,‘X,*‘) + bij (X,,‘Xm,‘) =<Xij)(r7tj’xTn,‘)+ 

( Yi j ) ( XijlXmn’ > + ( xi~yi~xT?lTl’ ) 

(1.4) 

2. We consider a nonhomogeneous anisotropic elastic body in which the stresses (Tij 
and the strains eij are connected by the generalized Hooke’s law with the tensor of elas- 
tic moduli Cij~~iL~ defining the random tensor field 
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'sij = Cijmn & mn, Gij,j = 0, & Inn = ‘/a h&n,, + ur& (2.1) 

Carrying Out the statistical linearization (1.2) - (1.4) of the system (2. l), we obtain the 
following system of equations : 

<Oij) = (Cijmn)(Gnn) + (C&m km) (2.2) 

(aij,j> = 0, (%n) = ‘1, (lhn,,) + (%a,m>) 

aij? z aij.mnEmn + bm, Cijmn 
(2.3) 

Oij,j = 09 &* = li, c&n + uA,J 

aapij (Q’Cipmn) + bij (CkpijC,omn) z (2.4) 

(CccPij) <%jlC&fimn) + (Eij) (C&@j C&mn) + (C&,ij&~~Eij’) 

aat3ij(~ij’~mn~ + bij (C&j irnn) = 

(Cafiij) <%j’ &in) + (%j) (Ckpij &TX) f (C&i$ijLm,) 

The repeated Greek indices do not indicate summation. The system of equations (2.2)- 

(2.4) is closed. It can be solved more easily by the method of successive approximations 

lx. 
The problem of the determination of the states of stress and strain is considerably sim- 

plified if the probability distribution is normal, which is often the case in linearelastic 
systems [S]. In this case from the equations (2.4) we obtain 

a-. z_lmn = <c ijmn), bm, = (E,,,) (2.5) 

Taking into account (2.5). equation (2.3) becomes 

<c ijnn)Uh,nj z - ftj,j, fij = &jmn CFPln) (2.6) 

For a body of volume 8 with specified determined boundary conditions on its surface, 

the solution of the system (2.6) expressed by means of the Green’s function, has the form 

r41 
(2.7) 

The first two relations of the system (2.2) after substituting into them the expression 
(2.7) and carrying out the operation of mathematical expectation, reduce to the follow- 

Adjoining to (2.8) the last relation from (2.2) we obtain a closed system of integro- 

differential equations relative to the mean values of the displacement components. 

3. We consider a stochastically nonhomogenous isotropic elastic body whose dimen- 
sions are much larger than the dimensions of the nonhomogeneities. We assume that the 
elastic moduli are homogeneous isotropic functions of the coordinates and that the body 
is in a macroscopic homogeneous deformed state, i. e. 
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Ci jmn = h6ij6,,, + ~(&rz~j~ + 6inSjm) (3.1) 

(h) = const, (p) = const, <Em,) = collst 

In this case, the equations corresponding to the systems (2.2) -(2.4) obtain the form 

(Oij) = 2 ((p) (Eij) + (F'Eijl)) + 6ij (CA) (Enn) + <h’Etltt’)) (3.2) 

<Oij,j> = 0, <Eij> = l/z (<U&j> -t <"j,i)) 

Gij' = 2 (al&i; + bijp') + 6ij (al&n,* + &&') (3.3) 

oij,j = 0, Fij' = 'i, (Ui,: + Uj,i') 

2 (u~<Q cap') -I- b ap (E,$' p')) -t 8,, (dh'Q3') + b, @'%3')3 (3*4) 

2 (f..L.)(E,p’ E,p’) + (Eap)<Q4’ EL’) + (%p’ KZP P’)) + 

6,, ((h> {Eag’ Em’) + (Enn’ByEl,p> + &, ~%p’I) 

2 (al (p’Q3’) + baj3 <p’p’)) + 6,, (az <Ehn FL’) + UP’h’)) = 
2 (<pxp’~,p’) + <%fxP’P’) + <%pP’W) + 
6, p (0 )(%n’ p’ > + <En, xh p’ >+ (%nP’~’ )) 

2 (a, (& E:,) i- b,, (~L’E;)) -t- ~2 (&, &d + b, <&h’> = 

2 <p) &,E,;) + <%a) <$&) + <&a !&m)) + 

(A> <&n&Eijl) + (En,) (h’&k) + <&?I &i( h’) 

2 (a, <h’E’,a > + b,, +‘A’)) + us &n A’> + b, <h’h’ > = 
2 (<p> <h’E’tw) + <%z > G’p’) + <&cc p’h’)) + 

(A> dm h’ > + (E,,) &A’> + &?% h’h’ > 

In the assumption that the probability distribution is normal, the solution of the system 

of equations (3.4) is 
a1 = <p)>, bii = (&ij), a2 = CL), b, = CE,,) (3.5) 

Neglecting the influence of the boundary layer [3], we will seek the solution of the sys- 

tem of equations (3.3) -(3.5) with the aid of the Fourier transform [SJ. We denote the 
parameters of the transf~mation ofthe variables LEE by Ei. The solution of the system of 

equations (3.3) under the conditions (3.5) has the form 

(CL) &ij' -- ~ 
s [( 

4C (E,,) "m~~i~j - 2 (Eik) EkEj - (3.6) 

c = f(P) -t <A)) (2 (P) + G>)rl, m2 = Ei~i 

Here fr, fs are functions of the variables %i, which determine the spectral decomposi- 
tion of the random functions EL’, h’ 

p’ -L. ’ flei%% @, s A’ = 5 f2&%d~ (3.7) 

The integration is carried out over the entire space of the variables ji. Taking into ac- 
count the isotropy of the random functions, from the relations (3.6) and (3.7) we obtain 

r51 
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(3.8) 

2 (W&q @1(m) + 2 (%,)(C - 1)E&@%(rn)~ d% 

<P>@'GI > = 2 (q&n) (c - 1) (<h'h'> + 2/3 (k'p')) 

Here ~1 (m) is the spectral density of thr random function p’, (D, (ft?) is the relative 
spectral density of the random functions h’ and IL’ and (h’h’) is the dispersion of the 

random function h’. Since @ (m) is an isotropic function, the integrals which occur in 

the first relation of (3.8) are isotropic [I;, 71 , symmetric with respect to all the tensor 

Here (p’h’ > is the correlative moment of the random functions p’ and k’ and ([c’P’ > 

is the dispersion of the random function p’ . Substituting the expressions (3.8). (3.9) into 

the first relation of (3.2) we obtain 

~1 = (p> - 2 15 (p) (2 (P) + (h)) (El’p’) (3.11) 

Under the assumption of the noncorrelatedness of the random functions A’ and EL’ the 

expressions (3.11) agree with the results given in [8], where a small fluctuation of the 

random functions is assumed. 

Thus, from the expressions (3.10) it follows that the behavior of the stochastically 
nonhomogeneous isotropic elastic material is described on the average by the Hooke’s 
law with effective elasticity moduli defined by the relations 

Y = lL1t k = A, + '1, ~1 

where JJ and k are the shear and volume moduli, respectively. 
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The nonstationary stream of perfect fluid whose streamlines are stationary ( a 
quasi-stationary stream) is considered in a conservative field of external forces. 

Conditions under which a field of unit vectors can simultaneously represent the 
field of velocity directions of a barotropic quasi-stationary potential or vortex 

motion of a perfect fluid are determined. Comparison is made with the results 

cited in [1] for a stationary motion, and the absolute values of velocities of sta- 
tionary and quasi-stationary streams with common streamlines are compared in 
certain classes of motion. Comparison is also made with the results presented in 

[2] for a quasi-stationary stream of a perfect incompressible fluid. The range of 
the considered classes of unit vector fields, the arbitrariness of determination of 
the absolute value of velocity, and the acceleration and density potentials for a 
given velocity direction field are determined. It is assumed that the arbitrariness 
of solutions is determined in a class of analytic functions and that vector fields 
are analytic. 

1. We denote the unit vector of velocity direction by e and the vector of streamline 
curvature by k. A vector field is called holonomic if there exists a set of surfaces ortho- 

gonal to it [l]. The quantity H = div e is called the mean curvature of field e [3]. 
It is assumed that some of the vector lines of the field are not straight. 

Any holonomic field e may be considered to be the velocity direction field of a sta- 
tionary stream of perfect fluid [4]. For a potential quasi-stationary stream of perfect 

fluid the statement formulated in Theorem 2 in [2] for such fluid is valid. The geometry 
of velocity directions of such fields for a perfect incompressible fluid is different, since 

the incompressibility imposes an additional condition on the velocity direction field 
(condition 2 in Theorem 1 in [2]). For the quasi-stationary stream of perfect fluid we 
have the following theorems. 

Theorem 1. The absolute values of velocities 11’ and I’ of a stationary and quasi- 
stationary streams with common streamlines are related by the expression V = $?I’, 
where I$ is a function which at every instant satisfies the condition c 2: grad 11: = 6 . 

Since for a perfect incompressible fluid 4; depends only on time (note to Theorem 2 
in El), hence the arbitrariness of determination of the absolute value of velocity for a 


